References
-
[1] Nagrath, P., Jain, R., Madan, A., Arora, R.,
Kataria, P., & Hemanth, D. J. (2021). "SSDMNV2: A real-time DNN-based
face mask detection system using single shot multibox detector and
MobileNetV2." *Sustainable Cities and Society, 66,* 102692.
-
[2] Loey, M., Manogaran, G., Taha, M. H. N., &
Khalifa, N. E. M. (2021). "A hybrid deep transfer learning model with
machine learning methods for face mask detection in the era of the
COVID-19 pandemic." *Measurement, 167,* 108288.
-
[3] Jiang, M., Fan, X., & Yan, H. (2020).
"RetinaMask: A face mask detector." *arXiv preprint arXiv:2005.03950.*
-
[4] Jha, D., Puri, A., & Gupta, P. (2020). "COVID-19
detection in chest X-ray images using majority voting based classifier
ensemble." *Materials Today: Proceedings, 46,* 2407-2413.
-
[5] Ge, S., Li, J., Ye, Q., & Luo, Z. (2017).
"Detecting masked faces in the wild with LLE-CNNs." *Proceedings of
the IEEE conference on computer vision and pattern recognition,*
2682-2690.
-
[6] Rizwan, M., Kumar, R., Srivastava, P. K., Rashid,
M., & Islam, N. (2021). "Deep learning-based face mask detection
algorithm for COVID-19 pandemic." *Lecture Notes on Data Engineering
and Communications Technologies, 59,* 341-351.
-
[7] He, K., Zhang, X., Ren, S., & Sun, J. (2016).
"Deep residual learning for image recognition." *Proceedings of the
IEEE conference on computer vision and pattern recognition,* 770-778.
-
[8] Redmon, J., & Farhadi, A. (2018). "YOLOv3: An
incremental improvement." *arXiv preprint arXiv:1804.02767.*
-
[9] Howard, A. G., Zhu, M., Chen, B., Kalenichenko,
D., Wang, W., Weyand, T., ... & Adam, H. (2017). "MobileNets:
Efficient convolutional neural networks for mobile vision
applications." *arXiv preprint arXiv:1704.04861.*
-
[10] Deng, J., Dong, W., Socher, R., Li, L. J., Li,
K., & Fei-Fei, L. (2009). "ImageNet: A large-scale hierarchical image
database." *2009 IEEE Conference on Computer Vision and Pattern
Recognition,* 248-255.